[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Open Access
..
Registered in
..
Indexing and Abstracting
..
:: Volume 10, Issue 3 (Vol10 No3 Fall 2023- 2023) ::
J Child Ment Health 2023, 10(3): 78-99 Back to browse issues page
Meta-analysis of the Effectiveness of Transcranial Electrical Stimulation Interventions on Executive Function and Mathematical Performance in children with Specific Learning Disorder
Saeed Mohammadi Molod1 , Shahram Vahedi * 2, Soomaayeh Heysieattalab3 , Mojtaba Soltanlou4
1- Faculty of Education and Psychology, University of Tabriz, Iran
2- Department of Educational Psychology, Faculty of Education and Psychology, University of Tabriz, Iran
3- Department of Neuroscience, Faculty of Education and Psychology, University of Tabriz, Iran
4- Department of Psychology, Faculty of Psychology, University of Surrey, UK and Department of Child Psychology, University of Johannesburg, South Africa
Abstract:   (450 Views)
Background and Purpose: Learning disorder is a neurodevelopmental disorder that leads to difficulties in learning and performance of reading, writing, and mathematics. Transcranial electrical stimulation is one of the recent interventions that has been used in this group. The current paper aimed to systematically combine the findings of the existing studies to find the effectiveness of these brain stimulation interventions in improving the executive functions and mathematical performance of individuals with learning disorders, as well as the possible moderating variables using the meta-analysis method.  
Method: The statistical population of the research was all published studies including scientific articles and theses. The systematic literature turned 21 studies in the meta-analysis, and 64 effect size Cohen’s ds were extracted and analyzed using CMA3 software.
Results: The findings showed a significant moderate combined effect size in both fixed and random effects models. Moreover, the effect size of the transcranial random noise stimulation was shown to be larger than the transcranial direct-current stimulation and transcranial alternating current stimulation. In addition, the meta-regression showed that age is a significant predictor and moderator with a better effectiveness in younger individuals.
Conclusion: These findings reveal that transcranial electrical stimulation, especially random noise method, as one of the effective interventions in improving the executive functions and mathematical performance of children with learning disorder.
Article number: 6
Keywords: Learning disorder, executive functions, transcranial electrical stimulation, meta-analysis, meta-regression
Full-Text [PDF 1364 kb]   (144 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/09/2 | Accepted: 2023/11/10 | Published: 2023/12/21
References
1. Boyle JR, Forchelli GA. Differences in the note-taking skills of students with high achievement, average achievement, and learning disabilities. Learning and Individual Differences. 2014;35:9-14. https://doi.org/10.1016/j.lindif.2014.06.002 [DOI:10.1016/j.lindi f.2014.06.002 [Link]]
2. Association AP. Diagnostic & statistical manual of mental disorders. Washington APA Publication; 2013. https://www.psychiatry.org/psychiatrists/practice/dsm [Link]
3. Rezaei Azghandi S, Rezaie A, Mohammadifar MA. Critiquing and reviewing mathematics disorder diagnostic tools and methods for diagnosing this disorder in Iran. Journal of educational psychology studies. 2020;17(37):77-98. [Persian] [DOI:10.22111/jeps.2020.5251 [Link]]
4. Hallahan PD, Kauffman JM, Lloyd WJ, Elizabeth AM, Margaret PW. Learning Disabilities : Foundations, Characteristics, and Effective Teaching 3rd: Allyn & Bacon; 2004. https://www.directtextbook.com/isbn/ 9780205388677 [Link]
5. Bigler ED, Lajiness-O'Neill R, Howes NL. Technology in the assessment of learning disability. J Learn Disabil. 1998;31(1):67-82. https://doi.org/10.1177/002221949803100107 [DOI:10.1177/002221949803100107 [Link]]
6. Dehaene S, Piazza M, Pinel P, Cohen L. Three parietal circuits for number processing. Cogn Neuropsychol. 2003;20(3):487-506. https://doi.org/10.1080/02643290244000239 [DOI:10.1080/02643290244000239 [Link]]
7. Butterworth B, Varma S, Laurillard D. Dyscalculia: from brain to education. Science. 2011;332(6033):1049-53. https://doi.org/10.1126/science.1201536 [DOI:10.1126/science.1201536 [Link]]
8. Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA. Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biol. 2006;4(5):e125. https://doi.org/10.1371/journal.pbio.0040125 [DOI:10.1371/journal.pbio.0040125 [Link]]
9. Ansari D. Effects of development and enculturation on number representation in the brain. Nat Rev Neurosci. 2008;9(4):278-91. https://doi.org/10.1038/nrn2334 [DOI:10.1038/nrn2334 [Link]]
10. Rykhlevskaia E, Uddin LQ, Kondos L, Menon V. Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Front Hum Neurosci. 2009;3:51. https://doi.org/10.3389/neuro.09.051.2009 [DOI:10.3389/neuro.09.051.2009 [Link]]
11. Iuculano T, Cohen Kadosh R. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia. Front Hum Neurosci. 2014;8:38. https://doi.org/10.3389/fnhum.2014.00038 [DOI:10.3389/fnhum.2014 .00038 [Link]]
12. Soltanlou M, Dresler T, Artemenko C, Rosenbaum D, Ehlis AC, Nuerk HC. Training causes activation increase in temporo-parietal and parietal regions in children with mathematical disabilities. Brain Struct Funct. 2022;227(5):1757-71. https://doi.org/10.1007/s00429-022-02470-5 [DOI:10.1007/s00429-022-02470-5 [Link]]
13. Bulthe J, Prinsen J, Vanderauwera J, Duyck S, Daniels N, Gillebert CR, et al. Multi-method brain imaging reveals impaired representations of number as well as altered connectivity in adults with dyscalculia. Neuroimage. 2019;190:289-302. https://doi.org/10.1016/j.neuroimage.2018.06.012 [DOI:10.1016/j.neuroimage.2018.06.012 [Link]]
14. Spironelli C, Penolazzi B, Angrilli A. Dysfunctional hemispheric asymmetry of theta and beta EEG activity during linguistic tasks in developmental dyslexia. Biol Psychol. 2008;77(2):123-31. https://doi.org/10.1016/j.biopsycho.2007.09.009 [DOI:10.1016/j.biop sycho.2007.09.009 [Link]]
15. Lyon GR, Shaywitz SE, Shaywitz BA. A definition of dyslexia. Annals of Dyslexia. 2003;53(1):1-14. https://doi.org/10.1007/s11881-003-0001-9 [DOI:10.1007/s11881-003-0001-9 [Link]]
16. Martin A, Schurz M, Kronbichler M, Richlan F. Reading in the brain of children and adults: a meta-analysis of 40 functional magnetic resonance imaging studies. Hum Brain Mapp. 2015;36(5):1963-81. https://doi.org/10.1002/hbm.22749 [DOI:10.1002/hbm .22749 [Link]]
17. Turkeltaub PE, Gareau L, Flowers DL, Zeffiro TA, Eden GF. Development of neural mechanisms for reading. Nat Neurosci. 2003;6(7):767-73. https://doi.org/10.1038/nn1065 [DOI:10.1038/nn 1065 [Link]]
18. Richlan F. Developmental dyslexia: dysfunction of a left hemisphere reading network. Front Hum Neurosci. 2012;6:120. https://doi.org/10.3389/fnhum.2012.00120 [DOI:10.3389/fnhum.2012.00120 [Link]]
19. Shaywitz SE, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencl WE, et al. Functional disruption in the organization of the brain for reading in dyslexia. Proc Natl Acad Sci U S A. 1998;95(5):2636-41. https://doi.org/10.1073/pnas.95.5.2636 [DOI:10.1073/pnas.95.5.2636 [Link]]
20. Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N, Hulme C, et al. Neural systems predicting long-term outcome in dyslexia. Proc Natl Acad Sci U S A. 2011;108(1):361-6. https://doi.org/10.1073/pnas.1008950108 [DOI:10.1073/pnas.1008950108 [Link]]
21. Nevo E, Breznitz Z. Assessment of working memory components at 6years of age as predictors of reading achievements a year later. J Exp Child Psychol. 2011;109(1):73-90. https://doi.org/10.1016/j.jecp.2010.09.010 [DOI:10.1016/j.jecp.2010.09.010 [Link]]
22. Rosselli M, Matute E, Pinto N, Ardila A. Memory abilities in children with subtypes of dyscalculia. Dev Neuropsychol. 2006;30(3):801-18. https://doi.org/10.1207/s15326942dn3003_3 [DOI:10.1 207/s15326942dn3003_3 [Link]]
23. Masoura E. Establishing the Link Between Working Memory Function and Learning Disabilities. Learning Disabilities: A Contemporary Journal. 2006;4:29-41. https://files.eric.ed.gov/fulltext/EJ797674.pdf [Link]
24. Geary DC, Hoard MK, Hamson CO. Numerical and arithmetical cognition: patterns of functions and deficits in children at risk for a mathematical disability. J Exp Child Psychol. 1999;74(3):213-39. https://doi.org/10.1006/jecp.1999.2515 [DOI:10.1006/jecp. 1999.2515 [Link]]
25. Bottge BA, Heinrichs M, Chan S-Y, Serlin RC. Anchoring Adolescents' Understanding of Math Concepts in Rich Problem-Solving Environments. Remedial and Special Education. 2001;22(5):299-314. https://doi.org/10.1177/074193250102200505 [DOI:10.1177/ 074193250102200505 [Link]]
26. Fletcher JM, Lyon GR, Fuchs LS, Barnes, MA. Learning disabilities: From identification to intervention. New York: Guilford Press; 2007. [DOI:10.1177/10870547 07305354 [Link]]
27. Meltzer L. Executive function in education: From theory to practice. New York: Guilford Press; 2007. https://psycnet .apa.org/record/2007-03950-000 [Link]
28. McCloskey G, Perkins, L., & Divner, B. Assessment and intervention for executive function difficulties. New York: Routledge Press; 2009. https://doi.org/10.4324/9780203893753 [DOI:10.4324/9780203893753 [Link]]
29. Geary DC. Mathematical Disabilities: Reflections on Cognitive, Neuropsychological, and Genetic Components. Learn Individ Differ. 2010;20(2):130. https://doi.org/10.1016/j.lindif.2009.10.008 [DOI:10.1016/j.lindif.2009.10.008 [Link]]
30. Alloway TP. Working Memory, but Not IQ, Predicts Subsequent Learning in Children with Learning Difficulties. European Journal of Psychological Assessment. 2009;25(2):92-8. https://doi.org/10.1027/1015-5759.25.2.92 [DOI:10.1027/ 1015-5759.25.2.92 [Link]]
31. Wang E, Liu C. On working memory in children with mathematics disabilities. Advances in Psychological Science. 2005;13(01):39. https://journal.psych.ac.cn/adps/ EN/Y2005/V13/I01/39 [Link]
32. Keshavarz S, Kakavand A. Study of Numerical Processing Speed, Implicit and Explicit Memory, Active and Passive Memory, Conservation Abilities, and Visual-Spatial Skills of Students with Dyscalculia J Child Ment Health 2019;6(2):53-67. [Persian] http://childmentalhealth.ir/arti cle-1-730-en.html [Link] [DOI:10.29252/jcmh.6.2.6]
33. Castaldi E, Piazza M, Iuculano T. Learning disabilities: Developmental dyscalculia. Handb Clin Neurol. 2020;174:61-75. https://doi.org/10.1016/B978-0-444-64148-9.00005-3 [DOI:10.1016/B978-0-444-641 48-9.00005-3 [Link]]
34. Yousefi E, Faramarzi S, Malek Pour M, Yarmohammadian A. Comparison of the Effect of Executive Functions Training and Barkley's Model on Reading Performance and Academic Self-Concept in Students with Dyslexia. J Child Ment Health. 2020;6(4):51-62. [Persian] http://childmental health.ir/article-1-614-en.html [Link] [DOI:10.29252/jcmh.6.4.6]
35. Freilich R, Shechtman Z. The contribution of art therapy to the social, emotional, and academic adjustment of children with learning disabilities. The Arts in Psychotherapy. 2010;37(2):97-105. https://doi.org/10.1016/j.aip.2010.02.003 [DOI:10.1016/j.aip.2010.02.003 [Link]]
36. Shahmohamadi M, Entesarfooni G, Hejazi M, Asadzadeh H. The Impact of Cognitive Rehabilitation Training Program on Non-verbal Intelligence, Attention and Concentration, and Academic Performance of Students with Dyscalculia. J Child Ment Health 2019;6(2):93-106. [Persian] http://childmentalhealth.ir/article-1-591-en.html [Link] [DOI:10.29252/jcmh.6.2.9]
37. Krause B, Cohen Kadosh R. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Dev Cogn Neurosci. 2013;6:176-94. https://doi.org/10.1016/j.dcn.2013.04.001 [DOI:10. 1016/j.dcn.2013.04.001 [Link]]
38. Jacobson L, Ezra A, Berger U, Lavidor M. Modulating oscillatory brain activity correlates of behavioral inhibition using transcranial direct current stimulation. Clin Neurophysiol. 2012;123(5):979-84. https://doi.org/10.1016/j.clinph.2011.09.016 [DOI:10.1016 /j.clinph.2011.09.016 [Link]]
39. Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP, et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122(1-2):197-209. https://doi.org/10.1016/j.pain.2006.02.023 [DOI:10.1016/j.pain.2006.02.023 [Link]]
40. Bindman LJ, Lippold OC, Redfearn JW. The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) during Current Flow and (2) in the Production of Long-Lasting after-Effects. J Physiol. 1964;172(3):369-82. https://doi.org/10.1113/jphysiol.1964.sp007425 [DOI:10.1113/jphysiol.1964.sp007425 [Link]]
41. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527 Pt 3(Pt 3):633-9. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x [DOI:10.1111/j.1469-7793.2000.t01-1-00633.x [Link]]
42. Paulus W, Antal A, Nitsche MA. 4 Physiological Basis and Methodological Aspects of Transcranial. Transcranial brain stimulation. 2012:93. https://books.google.com/books ?hl=en&lr=&id=IgTSBQAAQBAJ&oi=fnd&pg=PA93&dq=Paulus,+W.,+Antal,+A.,+%26+Nitsche,+M.+A.+(2012).&ots=SEKa_KAPdV&sig=fGPoOv89iasa2zCfUVHjJZrs3hw#v=onepage&q&f=false [Link]
43. Inukai Y, Saito K, Sasaki R, Tsuiki S, Miyaguchi S, Kojima S, et al. Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability. Front Hum Neurosci. 2016;10:668. https://doi.org/10.3389/fnhum.2016.00668 [DOI:10.3389/fnhum.2016.00668 [Link]]
44. Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM, et al. Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br J Psychiatry. 2016;208(6):522-31. https://doi.org/10.1192/bjp.bp.115.164715 [DOI:10.1192/bjp.bp.115.164715 [Link]]
45. Chaieb L, Kovacs G, Cziraki C, Greenlee M, Paulus W, Antal A. Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex. Exp Brain Res. 2009;198(4):439-44. https://doi.org/10.1007/s00221-009-1938-7 [DOI:10.1007/s00221-009-1938-7 [Link]]
46. Nitsche MA, Lampe C, Antal A, Liebetanz D, Lang N, Tergau F, et al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci. 2006;23(6):1651-7. https://doi.org/10.1111/j.1460-9568.2006.04676.x [DOI:10.1111/j.1460-9568.2006.04676.x [Link]]
47. Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147-55. https://doi.org/10.1523/JNEUROSCI.4248-08.2008 [DOI:10.1523/JNEUROSCI.4248-08.2008 [Link]]
48. Paulus W. Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011;21(5): 602-17. https://doi.org/10.1080/09602011.2011.557292 [DOI:10.1080/09602011.2011.557292 [Link]]
49. Antal A, Herrmann CS. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural Plast. 2016;2016:3616807. https://doi.org/10.1155/2016/3616807 [DOI:10.1155/ 2016/3616807 [Link]]
50. Aghajani S, Taheri fard M, Alizadeh Goradel J. The effectiveness of Transcendental Direct Electric Stimulation (TDCS) on improving cognitive functions and problem solving skills of students. Journal of School Psychology. 2019;7(4):20-38. [Persian] [DOI:10.22098/ jsp.2019.745 [Link]]
51. Oliveira JF, Zanao TA, Valiengo L, Lotufo PA, Bensenor IM, Fregni F, et al. Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder. Neurosci Lett. 2013;537:60-4. https://doi.org/10.1016/j.neulet.2013.01.023 [DOI:10.1016/j.neulet.2013.01.023 [Link]]
52. Pinto JG, Hornby KR, Jones DG, Murphy KM. Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan. Front Cell Neurosci. 2010;4:16. https://doi.org/10.3389/fncel.2010.00016 [DOI:10.3389/fncel.2010.00 016 [Link]]
53. Smith AE, Ridding MC, Higgins RD, Wittert GA, Pitcher JB. Age-related changes in short-latency motor cortex inhibition. Exp Brain Res. 2009;198(4):489-500. https://doi.org10.1007/s00221-009-1945-8 / [Link] [DOI:10.1007/s00221-009-1945-8]
54. Hess G, Donoghue JP. Long-term depression of horizontal connections in rat motor cortex. Eur J Neurosci. 1996;8(4):658-65. https://doi.org/10.1111/j.1460-9568.1996.tb01251.x [DOI:10.1111/j.1460-9568. 1996.tb01251.x [Link]]
55. Fertonani A, Pirulli C, Bollini A, Miniussi C, Bortoletto M. Age-related changes in cortical connectivity influence the neuromodulatory effects of transcranial electrical stimulation. Neurobiol Aging. 2019;82:77-87. https://doi.org/10.1016/j.neurobiolaging.2019.07.009 [DOI:10.1016/j.neurobiolaging.2019.07.009 [Link]]
56. Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017;21(1):23-48. https://doi.org/10.1016/j.ejpn.2016.07.007 [DOI:10. 1016/j.ejpn.2016.07.007 [Link]]
57. Mundkur N. Neuroplasticity in children. Indian J Pediatr. 2005;72(10):855-7. https://doi.org/10.1007/BF02731115 [DOI:10.1007/BF02731115 [Link]]
58. Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a (1)H magnetic resonance spectroscopy study. Neurosci Lett. 2011;500(1):67-71. https://doi.org/10.1016/j.neulet.2011.05.244 [DOI:10.1016/j.neulet.2011.05.244 [Link]]
59. Murphy OW, Hoy KE, Wong D, Bailey NW, Fitzgerald PB, Segrave RA. Transcranial random noise stimulation is more effective than transcranial direct current stimulation for enhancing working memory in healthy individuals: Behavioural and electrophysiological evidence. Brain Stimul. 2020;13(5):1370-80. https://doi.org/10.1016/j.brs.2020.07.001 [DOI:10.1016/j.brs. 2020.07.001 [Link]]
60. Lazzaro G, Fuca E, Caciolo C, Battisti A, Costanzo F, Varuzza C, et al. Understanding the Effects of Transcranial Electrical Stimulation in Numerical Cognition: A Systematic Review for Clinical Translation. J Clin Med. 2022;11(8). https://doi.org/10.3390/jcm11082082 [DOI:10.3390/jcm11082082 [Link]]
61. Imburgio MJ, Orr JM. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis. Neuropsychologia. 2018;117:156-66. https://doi.org/10.1016/j.neuropsychologia.2018.04.022 [DOI:10.1016/j.neuropsychologia.2018.04.022 [Link]]
62. Snowball A, Tachtsidis I, Popescu T, Thompson J, Delazer M, Zamarian L, et al. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr Biol. 2013;23(11):987-92. https://doi. org/10.1016/j.cub.2013.04.045 [Link] [DOI:10.1016/j.cub.2013.04.045]
63. Pasqualotto A. Transcranial random noise stimulation benefits arithmetic skills. Neurobiol Learn Mem. 2016;133:7-12. https://doi.org/10.1016/j.nlm.2016.05.004 [DOI:10.1016/j.nlm.2016.05.004 [Link]]
64. Makkar M, Arumugam N, Midha D, Sandhu A. Transcranial Direct Current Stimulation as an Effective Treatment Compared to Video Games on Executive Functions in Children With Attention Deficit Hyperactivity Disorder. Iranian Rehabilitation Journal. 2022;20(2):199-208. https://doi.org/10.32598/irj.20.2.1552.1 [DOI:10.32598/irj.20.2.1552.1 [Link]]
65. Haeckert J, Lasser C, Pross B, Hasan A, Strube W. Comparative study of motor cortical excitability changes following anodal tDCS or high-frequency tRNS in relation to stimulation duration. Physiol Rep. 2020;8(19):e14595. https://doi.org/10.14814/phy2.14595 [DOI:10.14814/phy2.14595 [Link]]
66. Wang J, Tian J, Hao R, Tian L, Liu Q. Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory. PeerJ. 2018;6:e4906. https://doi.org/10.7717/peerj.4906 [DOI:10.7717/peerj.4906 [Link]]
67. Berryhill ME, Wencil EB, Branch Coslett H, Olson IR. A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett. 2010;479(3):312-6. https://doi.org/10.1016/j.neulet.2010.05.087 [DOI:10.1016/j.neulet. 2010.05.087 [Link]]
68. Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. J Neurosci. 2009;29(22):7271-7. https://doi.org/10.1523/JNEUROSCI.0065-09.2009 [DOI:10.1523/JNEUROSCI.0065-09.2009 [Link]]
69. Mulquiney PG, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin Neurophysiol. 2011;122(12):2384-9. https:// doi.org/10.1016/j.clinph.2011.05.009 [Link] [DOI:10.1016/j.clinph.2011.05.009]
70. Nozari M, Nejati V, Mirzaian B. Effectiveness of Transcranial direct current stimulation on executive functions and amelioration of symptoms of individuals with Major Depression Disorder. Journal of Applied Psychology. 2020;13(4):577-99. [Persian] https://doi.org/ 10.29252/apsy.13.4.577 [Link] [DOI:10.29252/apsy.13.4.577 [Link]]
71. Gladwin TE, den Uyl TE, Fregni FF, Wiers RW. Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci Lett. 2012; 512(1):33-7. https://doi.org/10.1016/j.neulet.2012.01.056 [DOI:10.1016/j.neulet.2012.01.056 [Link]]
72. Cohen Kadosh R, Soskic S, Iuculano T, Kanai R, Walsh V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr Biol. 2010;20(22):2016-20. https://doi.org/10.1016/j.cub.2010.10.007 [DOI:10.1016/j.cub.2010.10.007 [Link]]
73. Bertoni S, Franceschini S, Campana G, Facoetti A. The effects of bilateral posterior parietal cortex tRNS on reading performance. Cereb Cortex. 2023;33(9):5538-46. https:// doi.org/10.1093/cercor/bhac440 [Link] [DOI:10.1093/cercor/bhac440]
74. Rios DM, Correia Rios M, Bandeira ID, Queiros Campbell F, de Carvalho Vaz D, Lucena R. Impact of Transcranial Direct Current Stimulation on Reading Skills of Children and Adolescents With Dyslexia. Child Neurol Open. 2018;5:2329048X18798255. https://doi.org/10.1177/2329048X18798255 [DOI:10.1177/23290 48X18798255 [Link]]
75. Thomson JM, Doruk D, Mascio B, Fregni F, Cerruti C. Transcranial direct current stimulation modulates efficiency of reading processes. Front Hum Neurosci. 2015;9:114. https://doi.org/10.3389/fnhum.2015.00114 [DOI:10.3389/fnhum.2015.00114 [Link]]
76. Heth I, Lavidor M. Improved reading measures in adults with dyslexia following transcranial direct current stimulation treatment. Neuropsychologia. 2015;70:107-13. https://doi.org/10.1016/j.neuropsychologia.2015.02.022 [DOI:10.1016/j.neuropsychologia.2015.02.022 [Link]]
77. Turkeltaub PE, Benson J, Hamilton RH, Datta A, Bikson M, Coslett HB. Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimul. 2012;5(3):201-7. https://doi.org/10.1016/j.brs.2011.04.002 [DOI:10.1016/j.brs.2011.04.002 [Link]]
78. Cappelletti M, Gessaroli E, Hithersay R, Mitolo M, Didino D, Kanai R, et al. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. J Neurosci. 2013;33(37):14899-907. https://doi.org/10.1523/JNEUROSCI.1692-13.2013 [DOI:10.1523/JNEUROSCI.1692-13.2013 [Link]]
79. Jones KT, Gozenman F, Berryhill ME. Enhanced long-term memory encoding after parietal neurostimulation. Exp Brain Res. 2014;232(12):4043-54. https://doi.org/10.1007/s00221-014-4090-y [DOI:10.1007 /s00221-014-4090-y [Link]]
80. Prichard G, Weiller C, Fritsch B, Reis J. Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning. Brain Stimul. 2014;7(4):532-40. https://doi.org/10.1016/j.brs.2014.04.005 [DOI:10.1016/j.brs.2014.04.005 [Link]]
81. Cohen J. Statistical Power Analysis for the Behavioral Sciences1988. https://doi.org/10.4324/9780203771587 [DOI:10.4324/9780203771587 [Link]]
82. Kelly S. Qualitative interviewing techniques and styles. In: Bourgeault I, Dingwall R, de Vries R. (eds) The Sage Handbook of Qualitative Methods in Health Research. Thousand Oaks: Sage Publications; 2010. https://searchw orks.stanford.edu/view/11350022 [Link]
83. Tabandeh Saravi N. Investigating the effectiveness of Transcranial direct current stimulation (tDCS) over different cortex regions involved with reading in children and adolescence with Dyslexia. Tehran, Iran: Institute for Cognitive Science Studies; 2020. https://ganj.irandoc.ac.ir/ viewer/8f3794afb3af017a8078a177a349c099?sample=1 [Link]
84. Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, et al. Evidence for reading improvement following tDCS treatment in children and adolescents with Dyslexia. Restor Neurol Neurosci. 2016;34(2):215-26. https://doi.org/10.3233/RNN-150561 [DOI:10.323 3/RNN-150561 [Link]]
85. Rufener KS, Krauel K, Meyer M, Heinze HJ, Zaehle T. Transcranial electrical stimulation improves phoneme processing in developmental dyslexia. Brain Stimul. 2019;12(4):930-7. https://doi.org/10.1016/j.brs.2019.02.007 [DOI:10.1016/j.brs.2019.02. 007 [Link]]
86. Looi CY, Lim J, Sella F, Lolliot S, Duta M, Avramenko AA, et al. Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study. Sci Rep. 2017;7(1):4633. https://doi.org/10.1038/s41598-017-04649-x [DOI:10.1038/s41598-017-04649 -x [Link]]
87. Hauser TU, Rotzer S, Grabner RH, Merillat S, Jancke L. Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS). Front Hum Neurosci. 2013;7:244. https://doi.org/10.3389/fnhum.2013.00244 [DOI:10.3389/fnhum.2013.00244 [Link]]
88. Vaghef L, Ghaisary Sh, Zahedi M. The effect of transcranial alternatng current stimulaton (TACS) on attention n students with specal learning disorder: semi-experimental study. Studies in medical science (the journal of Urmia University of medical science). 2019;30(2):106-15. [Persian] https://sid.ir/paper/965742/en [Link]
89. Arjmandnia AA, Asbaghi M, Afrooz GH, Rahmanian M. The effect of transcranial direct current stimulation (tDCS) on improving working memory performance in children with mathematical disorder. Journal of learning disabilities. 2016;6(1):7-25. [Persian] https://sid.ir/paper/210158/en [Link]
90. Bayat Mokhtari L, Agha Yousefi AR, Zare H, Nejati V. The considering of the impact of transcranial direct current stimulation (TDCS) and phonological awareness training on improvement of the visual aspect function of the working memory in children with dyslexia. Journal of neuropsychology. 2017;3(2):50-67. [Persian] https://sid.ir/ paper/266871/en [Link]
91. Bayat Mokhtari L, Agha Yousefi AR, Zare H, Nejati V. The Impact of Transcranial Direct Current Stimulation (TDCS) and Phonological Awareness Training on the Auditory Function of Working Memory in Children with Dyslexia. . Journal of Exceptional Children. 2018;17(4):37-48. [Persian] http://joec.ir/article-1-523-en.html [Link]
92. Bagheri M, Moradi A, Peyman HA. Bilingualism, Dyslexia, Transcranial Direct Current Stimulation (tDCS), Computational cognitive rehabilitation, Speed of processing, working memory. Journal of cognitive psychology. 2019;6(4):25-34. [Persian] https://sid.ir/paper /366732/en [Link]
93. Moslemi B, Azmodeh M, Tabatabaei SM, Alivandi Vafa M. The effectiveness of transcranial direct current stimulation (tDCS) on attention and visual-auditory working memory in children with dyslexia. JOEC. 2021;20(4):93-104. [Persian] http://joec.ir/article-1-1133-en.html [Link]
94. Ahmadi A, Masomi F, Mardani, LS. The Effect of Transcranial Magnetic Stimulation of Brain over Selective Attention and Continuous Function of Children Suffering from Specific Learning Disability Disorder. Journal of Exceptional Children. 2022;22(2):37-44. [Persian] http://joec.ir/article-1-1424-en.html [Link]
95. Rooholamini SH, Soleymani M, Vafegh L. Effectiveness of Transcranial Direct Current Stimulation (TDCS) on Executive Functions (selective attention and flexibility) in Students with Dyslexia. Journal of learning disabilities. 2018;8(1):23-41. [Persian] https://sid.ir/paper/210143/en [Link]
96. Arefanian P, Saedmanesh M, Azizi M. Effect of Transcranial Direct Current Stimulation (TDCS) on Executive Functions of Children with Learning Disabilities. Scientifc journal of rehabilitatn medicine. 2021;9(4):91-101. [Persian] https://sid.ir/paper/389605/en [Link]
97. Rajaie pour MS, Saeidmanesh M. The Effectiveness of Transcranial Direct Current Stimulation(tDCS) from the Skull on Memory Students with Especially Learning Disorders. Neuropsychology. 2018;4(13):67-84. [Persian] https://clpsy.journals.pnu.ac.ir/article_5383.html?lang=en [Link]
98. Nosrat A, Shahabizadeh F, Hormozi MR, Ahi Q. The effectiveness of direct brain stimulation on tDCS combined with mindfulness training on executive functions and depression in children with reading disorders. medical journal of mashhad university of medical sciences. 2022;65(1):399-430. [Persian] [DOI:10.22038/ mjms.2022.64285.3776 [Link]]
99. Zemestani M, Izadpanah E, Solaimany S. Comparison of the effectiveness of two methods of two methods of transcranial direct current stimulation (T-DCS) and play therapy on attention and psycho-motor function of children with learning disabilities: a semi-experimental design. Studies in Medical Sciences. 2019;30(3):174-86. [Persian] http://umj.umsu.ac.ir/article-1-4538-en.html [Link]
100. Khaheshi S. he effect of direct current (tDCS ) and alternating ( tACS )current stimulation on cognitive function in student with learning disorder. Tabriz, Iran: Azarbaijan Shahid Madani University; 2018. [Persian] https://ganj.irandoc.ac.ir/viewer/00175874ded6d0373d11ff5e537e2cae [Link]
101. Rahimi M, Heidari A, Naderi F, Makvandi B, Bakhtiyarpour S. Comparison of Cognitive Training Method and Transcranial Direct Current Stimulation (tDCS) on the Visual Attention Processes in the Students with Special Learning Disorders. International Journal of Behavioral Sciences. 2019;12(4):162-8. [Persian] https://www.behavsci.ir/article_88128.html [Link]
102. Fahimnia M. The effect of transcranial direct current stimulation of brain (TDCS) on working memory and attention control in students with dyslexia. Karaj, Iran: Kharazmi niversity; 2018. [Persian] https://ganj.irandoc. ac.ir/viewer/ec4c1e98364c9a1090e2ec6ecbbf1ba7 [Link]
103. Sterne JAC, Harbord RM. Funnel Plots in Meta-analysis. The Stata Journal: Promoting communications on statistics and Stata. 2004;4(2):127-41. https://doi.org/10.1177/1536867X0400400204 [DOI:10.1177/15 36867x0400400204 [Link]]
104. Orwin RG. A Fail-SafeN for Effect Size in Meta-Analysis. Journal of Educational Statistics. 1983;8(2):157-9. https://doi.org/10.3102/10769986008002157 [DOI:10.3102/10769986008002157 [Link]]
105. Rosenthal R. The file drawer problem and tolerance for null results. Psychological Bulletin. 1979;86(3):638-41. https://doi.org/10.1037/0033-2909.86.3.638 [DOI:10.1037/0033-2909.86.3.638 [Link]]
106. Hedges LV, Vevea JL. Fixed- and random-effects models in meta-analysis. Psychological Methods. 1998;3(4):486-504. https://doi.org/10.1037/1082-989X.3.4.486 [DOI:10.1037/1082-989x.3.4.486 [Link]]
107. Ioannidis JP, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 2007;335(7626):914-6. https://doi.org/10.1136/bmj.39343.408449.80 [DOI:10.1136/bmj.39343.408449.80 [Link]]
108. Cochran WG. The Combination of Estimates from Different Experiments. Biometrics. 1954;10(1). https://doi.org/10.2307/3001666 [DOI:10.2307/3001666 [Link]]
109. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-60. https://doi.org/10.1136/bmj.327.7414.557 [DOI:10.1136/bmj.327. 7414.557 [Link]]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi Molod S, Vahedi S, Heysieattalab S, Soltanlou M. Meta-analysis of the Effectiveness of Transcranial Electrical Stimulation Interventions on Executive Function and Mathematical Performance in children with Specific Learning Disorder. J Child Ment Health 2023; 10 (3) : 6
URL: http://childmentalhealth.ir/article-1-1375-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 3 (Vol10 No3 Fall 2023- 2023) Back to browse issues page
فصلنامه سلامت روان کودک Quarterly Journal of Child Mental Health
Persian site map - English site map - Created in 0.05 seconds with 43 queries by YEKTAWEB 4652